Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Nutr ; 10: 1131192, 2023.
Article in English | MEDLINE | ID: covidwho-2286864

ABSTRACT

Background: COVID-19 is associated with subclinical myocardial injury. Exogenous ketone esters acutely improve left myocardial function in healthy participants and patients with heart failure, but the effects have not been investigated in participants previously hospitalized for COVID-19. Methods: This is a randomized placebo-controlled double-blind crossover study comparing a single oral ketone ester dose of 395 mg/kg with placebo. Fasting participants were randomized to either placebo in the morning and oral ketone ester in the afternoon or vice versa. Echocardiography was performed immediately after intake of the corresponding treatment. Primary outcome was left ventricular ejection fraction (LVEF). Secondary outcomes were absolute global longitudinal strain (GLS), cardiac output and blood oxygen saturation. Linear mixed effects models were used to assess differences. Results: We included 12 participants previously hospitalized for COVID-19 with a mean (±SD) age of 60 ± 10 years. The mean time from hospitalization was 18 ± 5 months. Oral ketone esters did not increase LVEF between placebo and oral ketone ester [mean difference: -0.7% (95% CI -4.0 to 2.6%), p = 0.66], but increased GLS [1.9% (95% CI: 0.1 to 3.6%), p = 0.04] and cardiac output [1.2 L/min (95% CI: -0.1 to 2.4 L/min), p = 0.07], although non-significant. The differences in GLS remained significant after adjustment for change in heart rate (p = 0.01). There was no difference in blood oxygen saturation. Oral ketone esters increased blood ketones over time (peak level 3.1 ± 4.9 mmol/L, p < 0.01). Ketone esters increased blood insulin, c-peptide, and creatinine, and decreased glucose and FFA (all p ≤ 0.01) but did not affect glucagon, pro-BNP, or troponin I levels (all p > 0.05). Conclusion: In patients previously hospitalized with COVID-19, a single oral dose of ketone ester had no effect on LVEF, cardiac output or blood oxygen saturation, but increased GLS acutely. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT04377035.

2.
J Clin Med ; 11(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580632

ABSTRACT

C-reactive protein (CRP) has prognostic value in hospitalized patients with COVID-19; the importance of CRP in pre-hospitalized patients remains to be tested. Methods: Individuals with symptoms of COVID-19 had a SARS-CoV-2 PCR oropharyngeal swab test, and a measurement of CRP was performed at baseline, with an upper reference range of 10 mg/L. After 28 days, information about possible admissions, oxygen treatments, transfers to the ICU, or deaths was obtained from the patient files. Using logistic regression, the prognostic value of the CRP and SARS-CoV-2 test results was evaluated. Results: Among the 1006 patients included, the SARS-CoV-2 PCR test was positive in 59, and the CRP level was elevated (>10 mg/L) in 131. In total, 59 patients were hospitalized, only 3 of whom were SARS-CoV-2 positive, with elevated CRP (n = 2) and normal CRP (n = 1). The probability of being hospitalized with elevated CRP was 4.21 (95%CI 2.38-7.43, p < 0.0001), while the probability of being hospitalized with SARS-CoV-2 positivity alone was 0.85 (95%CI 0.26-2.81, p = 0.79). Conclusions: CRP is not a reliable predictor for the course of SARS-CoV-2 infection in pre-hospitalized patients. CRP, while not a SARS-CoV-2 positive test, had prognostic value in the total population of patients presenting with COVID-19-related symptoms.

3.
BMJ Open ; 10(12): e042786, 2020 12 29.
Article in English | MEDLINE | ID: covidwho-999260

ABSTRACT

INTRODUCTION: Sarcopenia is generally used to describe the age-related loss of muscle mass and strength believed to play a major role in the pathogenesis of physical frailty and functional impairment that may occur with old age. The knowledge surrounding the prevalence and determinants of sarcopenia in older medical patients is scarce, and it is unknown whether specific biomarkers can predict physical deconditioning during hospitalisation. We hypothesise that a combination of clinical, functional and circulating biomarkers can serve as a risk stratification tool and can (i) identify older acutely ill medical patients at risk of prolonged hospital stays and (ii) predict changes in muscle mass, muscle strength and function during hospitalisation. METHOD AND ANALYSIS: The Copenhagen PROTECT study is a prospective cohort study consisting of acutely ill older medical patients admitted to the acute medical ward at Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark. Assessments are performed within 24 hours of admission and include blood samples, body composition, muscle strength, physical function and questionnaires. A subgroup of patients transferred to the Geriatric Department are included in a smaller geriatric cohort and have additional assessments at discharge to evaluate the relative change in circulating biomarker concentrations, body composition, muscle strength and physical function during hospitalisation. Enrolment commenced 4 November 2019, and proceeds until August 2021. ETHICS AND DISSEMINATION: The study protocol has been approved by the local ethics committee of Copenhagen and Frederiksberg (H-19039214) and the Danish Data Protection Agency (P-2019-239) and all experimental procedures were performed in accordance with the Declaration of Helsinki. Findings from the project, regardless of the outcome, will be published in relevant peer-reviewed scientific journals in online (www.clinicaltrials.gov). TRIAL REGISTRATION NUMBER: NCT04151108.


Subject(s)
Muscle Strength , Muscles , Aged , Biomarkers , Cohort Studies , Humans , Length of Stay , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL